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Abstract 

 
Neutron diffraction study of heavy water intercalation in 

superconducting deuterated sodium cobaltate Na0.35CoO21.4D2O 
 

Cinzia Metallo 

Takeshi Egami 

 

When Na-deficient NaxCoO2 is intercalated with water1 or heavy water2, it 

becomes a superconductor. The maximum critical temperature of 4.5 K is found for the 

composition NaxCoO2yD2O (x= 0.3 and y=1.4). In spite of its low transition temperature, 

several similarities with high temperature superconducting cuprates have raised interest 

in this compound. Nevertheless, up to now, a clear understanding of the role of water has 

not been achieved.  

Since superconductivity appears only when water is inserted in the parent 

compound, the goal of this research work was to understand what kind of effect water 

intercalation has in terms of electron conduction and superconductivity. Neutron 

scattering played a crucial role in this study because of its ability to determine the 

accurate positions of light elements such as hydrogen or deuterium.  

We have focused our attention on the intra-molecular range of D2O, studying the 

structural changes that take place within the (heavy) water molecules themselves. In 

order to do this the distance correlations D-D, D-O, and O-O have been studied.  

Powder neutron diffraction data of the deuterated sodium cobaltate have been 

analyzed using the Pair Density Function (PDF) technique, which gives information 

about the local structure of the water molecules. The peaks of the PDF of the neutron 

diffraction data, in fact, give directly in real space the distances between pair of atoms, in 

this case the distances D-D, D-O, and O-O. If a peak shifts to a lower (or higher) value of 

r (Å) it means that the bond between that particular pair of atoms has become shorter (or 

 iii
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longer). In this way it was possible to determine any change in the geometry of the water 

molecules.  

The results obtained show that the D-D distance and the D-O-D angle in 

Na0.35CoO21.4D2O are significantly different from those of ordinary water (D2O). Two 

coexisting distributions of possible D-O-D bond angles are observed. We speculate that 

the altered geometry of the intercalated water molecules is due to a modification of the 

dynamics of the hydrogen bond. In this case, water may be embedded in an electronically 

active environment and indirectly participate in electronic conduction. 
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Chapter 1 

Introduction 

In 2003, a new superconductor was discovered in the hydrated form of sodium 

cobalt oxide.1 What makes this compound extremely peculiar is that superconductivity is 

achieved by intercalating the Na-deficient compound NaxCoO2 with water. 

In this chapter, the motivations that induced us to study the deuterated sodium 

cobaltate Na0.3CoO21.4D2O and the main purpose of this dissertation are presented. At 

the end of the chapter, the organization of the rest of this thesis is explained in detail. 

 

1.1 Background of the research 

 Sodium cobalt oxide NaxCoO2 was discovered about 30 years ago. The relatively 

large thermoelectric power, combined with a low resistivity, has made it the object of an 

intense investigation due to its potentially promising applications as a thermoelectric 

material. 

In 2003, the discovery of superconductivity in the hydrated1,3 (or deuterated2) 

form of the sodium cobalt oxide (NaxCoO2yH2O) has renewed research interest in this 

oxide system. The superconducting phase NaxCoO2yH2O is obtained from the parent 

compound NaxCoO2 through oxidative de-intercalation of Na+ and subsequent 

intercalation of water in between each pair of adjacent CoO2 layers.  

The study of hydrated sodium cobalt oxide is particularly interesting, despite its 

low transition temperature (TC~4.5 K), because of the existence of several analogies with 

the more studied high temperature superconducting cuprates (paragraph 1.2.3). 

Understanding of the mechanism that gives rise to superconductivity in this compound 

may help to uncover the superconducting mechanism in high temperature 
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superconductors. The similarities with cuprate superconductors are mainly: (1) both have 

a layered crystal structure with the charge mainly in the plane composed of magnetic 

ions; (2) TC strongly depends on doping. Electronically active planes (CuO2 layers in 

cuprates, CoO2 layers in cobaltates) alternate with non superconducting planes (Na 

layers) that act as space separators and as charge reservoirs. In reality, the CoO2 plane in 

cobaltates is a layer of edge sharing CoO6 octaedra, while CuO2 layers in cuprates have 

Cu with square-planar coordination with a O-Cu-O bond angle of about 180º. 

Furthermore, the optimal TC occurs in a narrow range of Na concentrations and decreases 

in both under and over doped materials, in analogy with the phase diagram of cuprates 

which displays a doping-dependent behavior. 

The dependence of TC on the water concentration (y) is a central issue. As the 

water content approaches the value y~1.4 (where the superconducting phase appears), 

water molecules separate from the Na layer and go to form additional H2O layers 

between the Na and CoO2 layers. As a consequence, the spatial separation between the 

CoO2 layers becomes bigger and the c-axis lattice parameter increases from 11.2 Å (y=0) 

to 19.6 Å (y=1.4).4 As of today, there is no agreement on the exact spatial arrangement of 

the water molecules between the Na and CoO2 layers.5

Despite the fact that it is generally believed that the effect of the hydrogenation is 

only to enhance the two-dimensionality of the structure and increase spin fluctuations, a 

clear understanding of the role of water has not yet been achieved. 

In this thesis, the problem of understanding the effect of water intercalation in 

sodium cobaltate was approached by asking the following question: what if the role of 

water is not only to enhance the two-dimensionality but also to actively help to set the 

superconducting mechanism? The technique chosen to answer this question was neutron 

scattering because of its ability to detect light atoms such as H. In order to avoid the 

disturbing background due to inelastic scattering from H, however, we have chosen to 

deuterate our sample instead of hydrating it. The results of this investigation are 

chronicled in these pages. 
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1.2 Organization of the thesis 

In this thesis, I will report on experiments we have done using neutron diffraction 

to elucidate what role water may play in triggering the superconducting state in the cobalt 

oxide compound Na0.35CoO21.4D2O. 

In chapter two, some basic features of conventional and high temperature 

superconductors will be briefly reviewed. A parallel between cuprate superconductors 

and cobaltate superconductors will be also made. 

In chapter three, the basic theory of neutron scattering and the technique used to 

analyze our neutron diffraction data, the Pair Distribution Function (PDF) technique, will 

be illustrated. 

In chapter four, the sample preparation and the properties of the compounds 

studied (Na0.7CoO2, Na0.35CoO21.4D2O, and D2O) will be described. 

Finally in chapter five, the experimental analysis will be introduced, and the 

possible implications of our results will be discussed. 
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Chapter 2 

Basic theory of superconductivity 

Since the compound studied is a superconductor, in this chapter a brief review of 

some basic concepts of superconductivity is presented.  

 

2.1 Properties of a superconductor 

A superconductor is a material characterized by the following two properties: 

(a) No resistivity (ρ=0) for all temperatures T<TC, where TC is the critical temperature 

(figure 2.1a); 

(b) No magnetic induction (B=0) inside the superconductor (Meissner effect) for small 

applied magnetic fields (figure 2.1b). 
 

(b) (a) 

 

Figure 2.1: Properties of a superconductor: (a) below the critical temperature TC, the 
electrical resistivity goes to zero; (b) below the critical applied magnetic field HC the 
magnetic flux is expelled (Meissner effect). 

 4
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The phenomenon of superconductivity was first discovered by H. K. Onnes6 in 

1911 while investigating the electrical properties of metals at extremely cold 

temperatures. When he passed a current through a very pure mercury wire and measured 

its resistance at steadily decreasing temperatures, he surprisingly found that the resistance 

suddenly vanished at 4.2 K. In the years to follow many other metallic elements were 

discovered to superconduct at very low temperatures (for example lead has TC= 7.2 K and 

Nb has TC=9.2 K) 

In 1933 Meissner and Ochsenfeld7 discovered the second surprising property of 

the superconducting state: perfect diamagnetism. Below the critical value HC of an 

applied magnetic field, the magnetic flux is expelled from the interior of the 

superconductor. A superconductor does not allow a magnetic field to penetrate its 

interior. If the applied magnetic field is strong enough, it penetrates the interior of the 

metal and the metal loses its superconductivity. This phenomenon is called the Meissner 

effect and it is the reason why a magnet can levitate above a superconductor. 

Superconducting materials that completely expel the magnetic flux below a 

certain critical field HC are called type I superconductors. Superconductors that have two 

critical fields HC1 and HC2 are called type II superconductors. While the flux is 

completely expelled up to HC1, it partially penetrates into the material between HC1 and 

HC2 in the form of microscopic filaments called vortices. Above HC2 the material returns 

to the normal state. 

 

2.2 Conventional superconductors 

Although superconductivity was discovered in 1911, it was not until 1957 that 

Bardeen, Cooper, and Schrieffer (Nobel Prize 1957) proposed a complete microscopic 

theory of the phenomenon, the so called BCS theory.8

The basic idea of BCS theory is that electrons (fermions) pair via phonon 

coupling and the pairs (bosons, called Cooper pairs) condense into a single coherent 

ground state which allows the electrons to move cooperatively through the crystal in a 

single coherent motion. The electrons that form each Cooper-pair have opposite spins and 
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momenta, so the net momentum p of the pair is zero. By the de Broglie relation (
p
h

=λ ), 

the associated wave has infinite wavelength (in more realistic physical terms it means 

that it is of the order of the size of the sample). As a consequence, superconductivity is a 

quantum phenomenon on a macroscopic scale. In other words, the superconducting 

ground-state is essentially the condensation of the Cooper-pairs into a single macroscopic 

quantum state – a process analogous to Bose-Einstein condensation. In the normal state 

of a metal, the scattering of conduction electrons (by lattice vibrations, impurities, or 

lattice imperfections) contributes to resistivity. In the superconducting state, on the other 

hand, since there is no scattering of individual pairs of the coherent fluid, there is no 

resistivity. Once the collective, highly coordinated, state of coherent Cooper pairs is set 

into motion, its flow is without dissipation.  

The fact that the ‘glue’ that pairs electrons is provided by lattice elastic waves 

(phonons) was shown experimentally by the isotope effect, according to which two 

different isotopes of the same metal exhibit different critical temperatures.9,10 For some 

simple metals, the critical temperature TC was found to vary as the inverse square root of 

the nuclear mass: 2
1

~ −mTC . Since the phonon frequency varies as ω~
m
k , the discovery 

of the isotope effect led to the conclusion that phonons are indeed involved in the pairing 

mechanism. 

In conventional superconductors, the order parameter (OP) associated with this 

BCS ground-state typically has s-wave symmetry. The formation of Cooper-pairs opens a 

gap of width ∆ in the density of electronic states at the Fermi level.11, 12 The quantity 

∆ depends on temperature and it is referred to as the superconducting energy gap (or 

superconducting order parameter). 

With the BCS theory, the problem of superconductivity was largely considered 

solved. Despite many efforts to find materials that could superconduct at higher 

temperatures, for decades the highest known transition temperature was of about 23 K 

(Nb3Ge). A huge surprise, however, was yet to come. 
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2.3 The discovery of High-Temperature Superconductors 

In 1986, Georg Bednorz and Alex Müller (IBM Zurich, Switzerland), discovered 

a new class of superconducting materials with transition temperatures much higher than 

the old record of 23 K. They were experimenting with a particular class of metal oxide 

ceramics called perovskites, when they found that ceramics of lanthanum, barium, 

copper, and oxygen (La2-xBaxCuO4) had a surprisingly high TC of 30 K.13 The once 

stagnant field of superconductivity research suddenly reopened. In 1987, the liquid 

nitrogen temperature barrier (77 K) was broken with the discovery of YBa2Cu3O7-δ, 

superconducting at 90 K;14 now it became possible to use liquid nitrogen as a coolant, 

which is inexpensive compared to liquid helium.  

Soon after 1987, compounds that superconduct at temperatures over 130 K were 

discovered. Because these materials superconduct at significantly higher temperatures 

than the class of conventional superconductors, they are referred to as High Temperature 

Superconductors (HTSCs). Also, since the common component in this new class of high 

temperature superconductors is a CuO2 plane, these materials are referred to as the 

cuprates. The main steps in the history of the increase in TC are shown in figure 2.2.  
 

 
 

Figure 2.2: Advancement in the history of superconductivity. The two red points 
represent the Nobel Prizes of Kamerlingh-Onnes (1913) and Bednorz & Müller (1987). 
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2.4 Basic remarks on HTSCs 

A detailed treatment of HTSCs is beyond the scope of this thesis. However, since 

similarities with cuprates are one of the reasons why interest in cobaltates has been so 

high, a few general remarks will be made. 

The discovery of high-temperature superconductivity created a great deal of 

excitement. Nevertheless, up to now, no satisfactory explanation of the superconducting 

mechanism has been given. 

High-temperature cuprate superconductors consist of layers of copper and 

oxygen, separated by metal atoms such as yttrium and barium (figure 2.3c). Probably one 

of the most complicating factors is the existence of a new tunable parameter, the carrier 

concentration (doping). This additional parameter leads to a 3-dimensional phase diagram 

(figure 2.3a). The stoichiometric (undoped) parent compounds are antiferromagnetic 

Mott insulators, and it is not until charge carriers are added that these materials become 

superconducting. In other words, superconductivity is achieved by doping (usually with 

holes) and it is believed to originate in the CuO2 planes.  

In a similar fashion, a sodium cobaltate superconductor consists of layers of 

cobalt and oxygen separated by layers of sodium; water molecules are incorporated into 

the structure between these two planes1 (figure 2.3d). As for HTSCs, there is a clear 

dependence of TC on doping (figure 2.3b) and the electronically active planes are those 

containing the magnetic ions (Co). The main difference between the two structures is the 

geometry of such planes. The Cu atoms in the CuO2 plane form a square lattice (figure 

2.3e), while the Co atoms in the CoO2 plane form a triangular lattice (figure 2.3d). The 

phase diagram of sodium cobaltate will be thoroughly discussed in chapter 4. 

In HTSCs, as in the case of conventional superconductors, it is now generally 

agreed that there is a gap in the density of states. However, instead of the simple 

symmetric s-wave gap found in conventional superconductors, the gap is dx2−y2-

wave.15,16 In simple terms, the dx2−y2-wave gap means that electrons traveling different 

directions in the crystal feel a different pairing potential.  
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Cuprates                vs.               Cobaltates 

(a)  (b) 
 

   (c)                   (d) 
 

            (e)     (f) 

 

Figure 2.3: Similarities and differences between cuprates and cobaltates. (a) 3D phase 
diagram of HTSCs. (b) Proposed 2D phase diagram of cobaltates. In both cases 
superconductivity is achieved by varying the carrier concentration x (doping). (c) Layered 
structure of the high temperature superconductor La2-xSrxCuO4, taken as an example of 
the cuprate family. (d) Layered structure of NaxCoO2yH2O. Electronically active planes 
are, respectively, (e) the square CuO2 planes and (f) the triangular CoO2 planes. 
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As it would be expected from the gap in the density of states, it is generally 

agreed that electrons are paired.17 However, it is not generally agreed what causes the 

pairing. Some argue that electron pairing is caused by magnons or other magnetic 

consequences, but there are also strong arguments that pairing is indeed caused by 

phonons.18

 10
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Chapter 3 

Experimental techniques 

This thesis documents the use of neutron diffraction to investigate the effect of 

heavy water intercalation in superconducting deuterated sodium cobalt oxide 

Na0.35CoO21.4D2O. Diffraction data were analyzed using the PDF technique, which gives 

information about local ordering in real space. This chapter introduces the fundamentals 

of both neutron scattering and the PDF technique. 

 

3.1 Principal properties of neutrons 

The neutron is a subatomic particle discovered by James Chadwick in 1932 

(Nobel Prize, 1935). Since then, neutrons have found a variety of applications in different 

fields, from military applications to energy supply, from nuclear medicine to many areas 

of condensed matter physics.  

Two main characteristics of neutrons are responsible for their unique scattering 

properties: they are uncharged, and they have a relatively large mass (mn =1.6749 10-27 

kg= ~1839 times the electron mass), which is nearly that of protons. The consequences of 

these properties of neutrons are of extreme importance:  

(1) Energetic neutrons can be slowed down (moderated) by collision with atoms of 

similar mass (such as H or D) so that they can be led to have energies of the same order 

of magnitude as those of phonons (a neutron with wave vector k of a few Å-1 has an 

energy of a few meV). Nevertheless, there are restrictions on the scattering vector Q for 

large energy transfer: excitations can be studied up to ~100 meV.  

(2) Neutrons interact with matter only very weakly but penetrate deeply into the sample, 

better than charged particles; they can be used as non-destructive probes to measure bulk 
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properties of a variety of materials. Some elements strongly absorb neutrons and should 

be avoided (e.g. Cd, Gd, B). 

(3) Neutrons interact directly with the atomic nuclei through a very short-range 

interaction (on the order of few Fermis, 1 fm=10-15 m).  

(4) There is no systematic dependence of the penetration depth on the atomic number; 

neutrons can probe light atoms and make strong contrasts (i.e. H/D). 

Neutrons also posses a magnetic moment and therefore represent an important 

tool in developing magnetic materials: they can be used to study microscopic magnetism, 

magnetic structure, and magnetic fluctuations (magnons). 

Because of the low brilliance of neutron sources and the small scattering section 

of neutrons, long beam-times and relatively large samples are usually necessary. 

Furthermore, since neutron scattering requires a high intensity flux, continuous 

improvements of neutron sources are essential in order to achieve a higher resolution. 

 

3.2 Basic theory of neutron scattering 

In a neutron scattering experiment, the number of neutrons scattered by a sample 

is measured as a function of the wave-vector change (Q) and the energy change (∆E) of 

the neutrons. A scattering event is based on the following two conservation laws for 

energy and momentum:19

)( fi KKQ
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h −=     Momentum transfer 
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n

fi KK
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EEE −=−=∆=
h

hω     Energy transfer 

The subscript f refers to the outgoing beam, while the subscript i refers to the incoming 

beam. As a consequence,  denotes the excitation and 0>∆E 0<∆E  the de-excitation of 

the system. In a neutron scattering experiment, these conservation laws limit the 

accessible energy and momentum transfers.  

Neutron scattering can be elastic or inelastic. In an elastic scattering event, the 

neutron is deflected but does not change its initial energy. In an inelastic scattering event, 
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the neutron either loses or gains energy. Figure 3.1 shows the two cases through the well-

known scattering triangles.  

The intensity of the scattered neutrons (number of neutrons scattered per incident 

neutron) can be expressed as a function of the momentum transfer hQ and the energy 

transfer ∆E=hω. This intensity I(Q, ∆E) is proportional to the Fourier transform of a 

time-dependent pair correlation function S(r,t), which gives the probability of finding 

two atoms at a certain distance r (Van Hove’s formulation). Because of this correlation 

between the positions of the atoms, neutron scattering can be used to probe the structure 

of a material.20

Two types of scattering can occur: coherent and incoherent scattering. In the first 

case the scattered waves from all the nuclei have definite relative phases and can 

interfere; elastic coherent scattering (diffraction) gives information about the equilibrium 

structure, inelastic coherent scattering gives information about the relative motions of the 

atoms (lattice vibrations). In the case of incoherent scattering, the scattered waves have 

indeterminate relative phase and do not interfere; therefore, information about atomic 

diffusion can be gathered. 

When a neutron passes through a sample, some of its energy may be transferred to 

the crystal to create lattice vibrations (neutron energy loss = phonon creation) with a 

characteristic frequency ω. If the crystal is already 'excited', on the other hand, a phonon 

can transfer its energy to the neutron (neutron energy gain = phonon annihilation). The 

two inelastic processes of phonon annihilation and phonon creation are related to each 

other by the principle of detailed balance: 

),(exp),( ωωω QS
TK
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B
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⎟⎟
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⎛ −
=−−  

In the above expression S(Q,ω ) is the scattering function, KB is the Boltzmann constant, 

T is the temperature, and ω is the frequency, which is assumed to be positive. Low 

temperature measurements are usually done with phonon creation. 
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Figure 3.1: Scattering triangle for (a) elastic and (b) inelastic scattering. In the case of 
inelastic scattering, the exchange of energy and momentum between the incident beam 
and the sample causes the change of direction and magnitude of the neutrons. 
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An important quantity in any neutron scattering experiment is the scattering 

length b, which measures the strength of the neutron-nucleus interaction or, in other 

words, the scattering power of each scatterer. The real part of the scattering length is 

related to the scattering of neutrons; its imaginary part is related to the absorption of the 

neutron by a nucleus, but it is usually negligible. Since the spatial extent of the nuclear 

potential is virtually infinitesimal, b does not strongly depend on the scattering angle. The 

fact that different nuclear isotopes have different b is used in various isotopic-labeling 

techniques (D/H contrast variation, for example). The scattering length can assume 

negative values, like for H; when this happens, it means that there is a phase shift of π. 

The scattering length b is related to the scattering cross section σ, which is the 

effective area made available to the incoming neutron. Looking at figure 3.2, we can 

define a differential cross section and a total cross section respectively as:21

=
Ωd

dσ
ΩΦ

Ω
d

) ,(direction  in the d into secondper  scattered neutrons ofnumber φθ  

Φ
=

 secondper  scattered neutrons ofnumber 
TOTσ  

In the above expressions, the total number of neutrons represents the number of neutrons 

scattered in all directions; dΩ is the solid angle subtended by the counter at the target; the 

direction (θ,φ ) is the direction of the scattered neutrons in polar coordinates; Φ is the flux 

of incident neutrons. The expression of the total cross section includes a coherent and an 

incoherent part: 

incohcohTOT σσσ +=  

In elastic scattering, the coherent part contributes to the Bragg intensity, while the 

incoherent part contributes to the off-Bragg intensity. The total scattering cross section 

can also be written as: 

incohcohincohcohTOT bbbbbb σσπππππσ +=+=−+== 222222 44)(444  

Table 3.1 shows the scattering length and cross section for different elements.  
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Figure 3.2: Geometry of a scattering experiment. In polar coordinates, (θ,φ ) is the 
direction of the scattered neutrons; dΩ is the solid angle subtended by the counter at the 
target; the distance of the counter from the target is assumed to be large so that dΩ is well 
defined; Φ is the flux of incident neutrons. 
 

 

Table 3.1: Scattering lengths and cross sections for different elements. 

 
 

Element 
Coherent 
Scattering 

Length 
bc (fm) 

Coherent 
Scattering 

Cross Section
σc (barns) 

Total 
Scattering 

Cross Section
σT (barns) 

Incoherent 
Scattering 

Cross Section 
σi=σT- σc (barns) 

Absorption 
Cross Section

(λ=1.84 Å) 
σabs (barns) 

H -3.74 1.76 82.0 80.3 0.333 
D 6.67 5.59 7.64 2.05 0.0005 
C 6.65 5.55 5.55 0 0.003 
N 9.36 11.03 11.53 0.5 1.91 
O 5.80 4.23 4.23 0 0.0001 
Ti -3.44 1.49 4.36 2.87 6.09 
B 5.30 3.54 5.24 1.70 767 

Cd 4.87 3.04 6.50 3.46 2520 
V -0.40 0.02 5.11 5.09 4.9 
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3.3 Elastic scattering of neutrons 

Both the coherent and the incoherent part of the total cross section are composed 

of an elastic and an inelastic term. Here only the results useful for understanding the 

technique used in this work are presented, avoiding any detailed derivation. 

The final expression of the elastic coherent and incoherent differential cross section in the 

case of multi-atomic crystals can be written as:19

∑
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In the first expression, is the equilibrium position of each scatterer. As it can be seen, 

the incoherent part has no momentum dependence and therefore contributes to a diffuse 

background. On the other hand, the coherent part has momentum dependence and 

contributes to give information on the location of the scatterers. The term 

l
v

∑ •

l

l
vv

Qie is the 

so called structure factor; it determines the positions of the Bragg peaks (elastic peaks). 

 

3.4 Debye-Waller factor 

 The assumption that we made so far is that the atoms that constitute a crystal have 

a perfectly periodic and static arrangement. Real crystals, on the other hand, have various 

kinds of disorder. The atoms in the crystal vibrate at any given temperature. Thermal 

fluctuations of the atoms from their average position (displacements) are taken into 

account through the Debye-Waller factor. Considering this thermal disorder due to 

harmonic lattice vibrations, the resulting distribution of atomic displacements from the 

average position is a Gaussian. The Debye-Waller factor is an exponential factor that 

increases linearly with temperature for high temperatures; it can be written as , 〉〉〈〈− 22 uQe
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where  is the r.m.s. amplitude of the lattice vibrations. The introduction of this 

correction factor translates into a decrement of the intensity of the Bragg peaks at high Q. 

The total scattering intensity of the crystal, however, is not diminished; the lost intensity 

goes to increase the thermal diffuse scattering, represented by the broad peaks in between 

two sharp Bragg peaks. While thermal fluctuations do affect the intensity of the elastic 

peaks, they do not contribute to their broadening. Since the incoherent elastic cross section 

is Q-independent, the Debye-Waller factor concerns only coherent elastic scattering. 

〉〉〈〈 2u

 

3.5 Sources of neutron beams 

Neutron scattering requires intense sources of neutrons. There are two possible 

sources of neutron beams suitable for a scattering experiment: nuclear reactors and 

accelerator-based sources (spallation sources).  

In the first case, neutrons are produced by fission of heavy nuclei such as U235. 

They are called fast neutrons and they usually have energies on the order of 1-2 MeV. 

Fast neutrons are slowed down by a process called moderation: they are forced to pass 

through a material, a moderator, until they reach a thermal equilibrium with the molecular 

motions of the material by repeated elastic collisions with the atomic nuclei. Commonly 

used moderators are H2O, D2O, LH2, LD2 because of their low A (atomic number) and 

their small σabs.  

The moderation process gives neutrons with energies from the meV range to 

tenths of an eV. They are called slow (thermal) neutrons because their energies are 

significantly lower than the fast ones. Neutrons with energies well below the energy that 

they would have in equilibrium at room temperature (0.025 eV) are called cold neutrons 

(table 3.2). Given the energy range of thermal neutrons, their wavelengths are of the 

same order as inter-atomic distances (few Å); diffraction measurements are therefore 

possible. 
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Table 3.2: Classification of neutrons by their energies. 

 
Neutrons Ekinetic T (K) Velocity Wavelength

UCN ~250 neV ~0.003 ~7 m/s ~600 Å 

Cold <3 meV <35 ~760 m/s ~5 Å 

Thermal ~25.9 meV 300 ~2,224 m/s ~1.8 Å 

Resonance ~1 eV ~104 ~1.4·104 m/s ~0.3 Å 

Slow ~100 eV ~106 ~1.4·105 m/s ~0.03 Å 

Intermed. Energy ~10 keV ~108 ~1.4·106 m/s ~0.003 Å 

Fast ~1 MeV ~1010 ~0.046 c ~0.0003 Å 

High Energy ~100 MeV ~1012 ~0.43 c ~3 fm 

Relativistic >1 GeV >1013 >0.875 c <0.9 fm 

 
In general, reactors produce a continuous flux of neutrons. The High Flux Isotope 

Reactor (HFIR) at Oak Ridge produces a continuous flux of ~ 1x1015 neutrons/cm2s. 

In the second case, neutrons are produced by bombarding a heavy target (U, W, 

Ta, Pb, Hg) with high-energy protons. The term spallation comes from the fact that, when 

fast high-energy protons bombard a heavy atomic nucleus, some neutrons are ejected, 

that is “spalled”. For every proton striking a heavy nucleus of the target, 20 to 30 

neutrons are expelled. An example is the SNS in Oak Ridge, where an ion source 

produces negatively charged hydrogen ions (a proton and two electrons). These ions, 

accelerated by a linear accelerator, are passed through a foil; in this way, two electrons 

are stripped off each ion, which is then converted into a proton. The protons pass into a 

ring that accumulates them in bunches. Each bunch of protons is then released as a high-

energy pulse of protons. These pulses hit a target made of liquid mercury. In this way, 

through the spallation process, high-energy pulses of neutrons are obtained. These fast 

neutron pulses are slowed down in a moderator as described before and finally guided 

through the beam lines. Neutron pulses can be produced with a much higher intensity 

than that available from continuous sources. Each pulse produced by the SNS will 
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contain a neutron intensity 50 to 100 times higher than that obtainable from a continuous 

source. The availability of short and intense neutron pulses is particularly advantageous 

for the time of flight (TOF) analysis.  

 

3.6 Measurement techniques 

Two main measurement techniques are available at neutron scattering facilities: 

the triple-axis spectrometer (TAS) and the time of flight (TOF).  

In the first case, a measurement is made for a single scattering vector and energy 

transfer: only the measure of a particular excitation at particular values of Q and E is 

possible at a time. A complete scan of a series of values is very time-consuming. The 

TAS is available at a reactor’s neutron sources, where the flux of neutrons is continuous.  

The TOF technique is most commonly performed at spallation neutron sources, 

which can produce neutron pulses with a significantly higher intensity than the one 

available from continuous sources. As a consequence, one of the main advantages of the 

TOF over the TAS resides in the possibility of accessing higher momentum transfer Q. In 

real space analysis, this means having information on a shorter atomic-distance scale.  

 

3.6.1 Triple-axis spectrometer (TAS) 

A triple-axis spectrometer consists of three independently controlled axes of 

rotation: one for the monochromator crystal, one for the sample, and one for the analyzer 

crystal (figure 3.3). The three axes define three main steps:22

(1) Neutrons of a specific wavelength are extracted from the neutron beam - generated by 

a nuclear reactor - through a monochromator crystal, which may be turned about the first 

axis. Therefore the neutron beam diffracted from the monochromator and incident on the 

sample is monochromatic with a fixed initial energy and wavevector (Ei, Ki).  

(2) Neutrons are scattered inelastically from the sample, which can rotate about a second  
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Figure 3.3: Schematic representation of a triple axis spectrometer for inelastic neutron 
scattering experiments. The source is a nuclear reactor. 

 

axis. These scattered neutrons possess a distribution of final energies Ef and final wave 

vectors Kf.  

(3) The analyzer (third axis) is aligned in order to reflect neutrons of a specific energy 

and a specific wavevector onto the detector; the analyzer can provide a wavelength 

selection with an accuracy of ∆λ/λ~10-3.  

The triple-axis spectrometer is able to measure the intensity of scattered neutrons 

for a particular momentum transfer Q and energy transfer E= ωh . Usually the 

measurements are done keeping either Ki or Kf fixed. With a computer-controlled 

spectrometer, there are two possible scan modes: constant-Q and constant-E scans. In the 

first case, it is possible to scan the energy transfer for a selected specific point in 

reciprocal space. In the second case, when the energy transfer is maintained constant, it is 

possible to scan along a particular direction in reciprocal space. One limitation of the 

TAS is that a measurement can be performed only in a restricted range of values of Q and 

E. Furthermore, a large portion of scattered neutrons is lost undetected.  
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When the neutrons penetrate the sample, they can initiate or cancel out 

oscillations in the atoms of the sample (phonons). If neutrons manage to create (excite) 

phonons, they themselves lose energy (inelastic scattering). Thus, using the TAS, it is 

possible to chart the atomic dynamics of a material, diffusion movements in liquids, and 

fluctuations in magnetic material. 

 

3.6.2 Time of flight (TOF) measurement 

The time of flight (TOF) is the technique used in this research. There are three 

basic steps:21

(1) A pulse of polychromatic neutrons is produced. Neutrons with different wavelengths 

and energies are available; those with higher energy have shorter wavelengths. 

(2) Neutrons spread out in time. Letting the neutrons travel along a short distance from 

the moderator to the sample, it is possible to separate them according to their energies. 

Neutrons with higher energy reach the sample sooner than neutrons with lower energy; a 

wide spectrum of energies irradiates the sample (figure3.4a). 

(3) After interacting with the sample, neutrons will gain or lose energy. The result is a 

change in their velocity. A multi-detector records the scattering angles and the times of 

arrival of the scattered neutrons (figure 3.4b). The result is the pattern of peaks shown in 

figure3.4c. Since thermal neutrons of all energies are available for use, the time-of-flight 

technique enables the collection of many data points for each source pulse reaching the 

sample. 

Even if a spallation source is particularly suitable for the TOF, also a reactor 

source can be successfully used. In this case, after a monochromator selects a 

wavelength, a pulsed beam is generated using a combination of choppers.  

A schematic representation of a TOF spectrometer is shown23 in figure 3.5. 
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   (a) 

.      (b) 

  (c) 

Figure 3.4: Schematics of a Time of Flight Technique (TOF) measurement. (a) Neutrons 
travel along a path L of several meters and are separated in energy. (b) A multi-detector 
records the times of arrival and the positions of the neutrons scattered from the sample. 
(c) Pattern obtained from the multi-detector for a crystal of the superconductor 
YBa2Cu3O7-δ. 
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Figure 3.5: Schematic diagram of a TOF spectrometer. The rotating chopper has the task 
of selecting neutrons with the desired velocity, i.e. with the desired wavelength. 
 

The main factors that affect the resolution function in the case of the TOF are 

related to both the instrument and the sample. The three main factors are: the source pulse 

width; the ambiguity in the measure of the flight distances to and from the sample due to 

the sample size and to the detector size; and the chopper opening time. Another important 

issue about the instrument resolution that must be considered is the uncertainty in the 

energy that results in an uncertainty in the momentum transfer.  

 

3.7 Time of flight neutron powder diffraction 

Powder diffraction is one of the most widely used techniques to explore the 

structural properties of materials. Powder samples are polycrystalline and, ideally, the 

micro crystallites are randomly oriented. Contrary to a single crystal experiment, 

individual diffraction spots are not observed; instead, what we observe is a series of rings 

of diffracted intensity as a function of the momentum transfer. The geometry of a powder 
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diffraction experiment is schematically represented in figure 3.6. When a monochromatic 

beam of neutrons with wave vector k is incident on a powder sample, the scattered wave 

vector k’ lies in a cone, called the Debye-Scherrer cone. Only crystallites whose τ vectors 

lie on a cone with axis along k and semi angle ψ contribute to the scattering. The 

expressions valid for ψ and τ can be written as: 

                                  θπ
2
1

2
1

−=Ψ      and     k2<τv  

While earlier diffraction experiments have been done using continuous sources, in 

the last years, time-of-flight powder diffraction experiments using a spallation source 

have become practicable. Since this technique utilizes a white beam (non 

monochromatized beam) of neutrons, it is possible to use the whole neutron flux, without 

having the neutron loss that normally happens during the process of monochromatization. 

Furthermore, the use of spallation sources gives the possibility to access high values of 

the momentum transfer through high-energy neutrons. This property of a spallation 

source is particularly important in real-space refinement analysis, where high-Q 

information translates into low-range distance information.  

 

 
 

Figure 3.6: Geometry of a powder diffraction experiment: the Debye-Sherrer cone. The 
incident wave vector is k, while the scattered wave vector is k’. 
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Momentum information can be gathered from the total time of flight of a neutron 

and the scattering angle θ using the following relation: 

h

θπ sin22 21 nm
t
LL

d
Q

∆
+

==  

L1 and L2 are, respectively, the primary flight path (moderator-sample) and secondary 

flight path (sample-detector); ∆t is the total time of flight; mn is the neutron mass. 

Even though only elastic scattering is supposed to be observed, a real diffraction 

spectrum includes some inelastic contribution to the total intensity due to the fact that no 

energy analyzer is used. As a result, inelastically scattered intensity may be interpreted as 

elastic intensity with the wrong momentum transfer. In the case of Rietveld analysis, this 

does not represent a major problem since the inelastic part of the total intensity 

contributes only to the broad featureless background. In the case of real space refinement, 

however, also the background is taken into account when we Fourier transform the whole 

diffraction spectrum. Appropriate corrections are needed. A well-known solution for this 

problem has been proposed by Plazcek.19

 

3.7.1 NPDF at LANSCE 

In this thesis, measurements have been taken at the Neutron Powder 

Diffractometer (NPDF) at the Los Alamos Neutron Science Center (LANSCE). The 

NPDF is specifically designed for Pair Distribution Function (PDF) studies of disorderly 

and nanocrystalline materials.26 In just a few hours, it is possible to collect a data set 

suitable for PDF analysis. The primary flight path is 32 meters and the secondary flight 

path is 1.5 meters. There are 20 detector panels with a total of 160 position-sensitive 

detectors in the backscattering region of the instrument. The medium and high angle 

backscattering detector banks determine a wide solid angle coverage; the extent of the 

range of the accessible momentum is enhanced by the backscattering geometry. Table 3.3 

shows the specifications of the NPDF diffractometer, while figure 3.7 shows a schematic 

representation of the detector banks. 
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Table 3.3: Specifications of the NPDF diffractometer at LANL. 
 

Specifications  
Moderator chilled water (283K) 
Flight path primary=32 m; secondary=1.5 m 
Beam size 5 cm high x 1 cm wide 
Detector Bank Info     
Bank 90 119 148 
d-spacing 0.17-4.2 Å 0.14-3.4 Å 0.12-3.0 Å 
Q 1.5-37.6 Å-1 1.8-45.8 Å-1 2.1-51.1 Å-1

Measured d/d 0.31% 0.28% 0.15% 
Detector type 124 3He tubes 80 3He PSDs 80 3He PSDs 
Pixels 124 4000 4000 
Pixel size (w x h) 0.5“ x 12“ 0.5“ x 1.0“ 0.5“ x 1.0“ 

 

 

 

 
 

Figure 3.7: Schematic representation of the detector banks of the NPDF diffractometer. 
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At the ±148º detector banks, the maximum momentum transfer available is 

beyond 50 Å-1. In practice, such a high limit yields great statistics for the momentum 

transfer range beyond 30 Å-1; this feature turns out to be extremely advantageous for a 

high-resolution real-space refinement analysis. 

 

3.8 Pair Distribution Function (PDF) technique 

The Pair Distribution Function (PDF) technique is a method of analyzing 

diffraction data that provides a structural characterization of both crystalline and non 

crystalline materials. For a long time, it has been applied to materials without any 

structural periodicity such as liquids and glasses; only recently has it been used to study 

the atomic-scale structure of crystalline materials with large intrinsic disorder.24

The PDF technique uses the complete diffraction pattern and it is said to be a total 

scattering method. Standard crystallography collects long-range structural information 

from the position and the intensity of the Bragg peaks that constitute the diffraction 

pattern; on the other hand, the PDF technique collects structural information taking into 

account both the contribution of the Bragg peaks and the diffuse scattering - i.e. the broad 

peaks between two sharp Bragg peaks. The fact that PDF takes into consideration the 

diffuse scattering represents a significant advantage with respect to conventional 

crystallography, since local deviations from the average structure are indeed related to the 

diffuse scattering. 

 

3.8.1 Standard crystallography vs. PDF 

In traditional crystallography, a crystal is defined as a three dimensional periodic 

arrangement of atoms with translational periodicity along the three dimensions of space 

(called principal axes). It is possible to generate an infinite crystalline structure by filling 

the space with the so-called unit-cells. The process of determining the atomic structure of 
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a crystal consists, therefore, of locating the average position of the atoms within one unit 

cell. Information about atomic positions is given by the study of the Bragg peaks.  

As already discussed, atomic thermal fluctuations from the average position 

(displacements) are taken into account through the Debye-Waller factor, which has the 

effect of decreasing the intensity of the Bragg peaks. The intensity lost from the Bragg 

peaks goes to increase the diffuse scattering. As a consequence, the information gathered 

from the Bragg analysis is only about the average position of individual atoms. The 

distance between the average positions is considered a good estimate of the average inter-

atomic distance.  

Crystallography has been, and still is, an incredibly successful method for the 

structural characterization of materials. However, real materials do not have the long-

range order and the perfect periodicity of a crystal; they are, instead, disordered or 

partially disordered. Since deviations are mainly responsible for their physical properties, 

the more a material deviates from being perfectly periodic, the more the role of the 

diffuse scattering becomes crucial. In the PDF analysis, no assumption of periodicity of 

any kind is made; a wide range of materials, from completely disordered to crystalline, 

can be studied. 

 

3.8.2 Atomic pair distribution function 

The Pair Distribution Function (PDF) technique is based on the Fourier analysis 

of the total scattering – the scattering that includes Bragg scattering, elastic diffuse 

scattering, and inelastic scattering. The physical quantity of interest is the measured 

intensity of the total scattering S(Q), called the total scattering structure function. Since a 

diffraction pattern appears as intensity versus momentum transfer Q=( ) in the 

reciprocal space, the quantity S(Q) is easily accessible. There are two main steps in a 

PDF analysis:

if KK −

25

(1) Raw data from a diffraction measurement are corrected for various instrument and 

sample effects (sample absorption, multiple scattering, polarization, extraneous 
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background signals…); data must also be normalized to give a set of final data on an 

absolute scale. 

(2) Corrected and normalized data are Fourier transformed to real space. The sine Fourier 

transform of the reduced structural function Q[S(Q)-1] gives the so-called reduced pair 

distribution function, G(r), which depends only on the distance r between two atoms in 

real space: 

[ ] dQQrQSQrrrG ∫
∞

−=−=
0

0 )sin(1)(2))((4)(
π

ρρπ  

In the above expression, 0ρ  is the average number density of atoms, )(rρ is the 

distribution of the inter-atomic distances (called the atomic pair density function), and 

S(Q) is the previously introduced total scattering structural function. The main steps of 

the PDF analysis are shown in figure 3.8. 

Because of experimental limitations on Q, G(r) is not the exact sine Fourier 

transform of the reduced structural function Q[S(Q)-1]. Data can be collected only within 

a finite range of the momentum transfer [0, Qmax]. The higher Qmax, the higher the real 

space resolution. Having high momentum scattering data is crucial for an accurate PDF 

analysis. Synchrotron X-ray and spallation neutron sources are capable of providing Q 

high enough to reveal local structural features with great accuracy. In practice, the 

problem that diffraction measurements can be taken only up to a certain Qmax results in 

termination ripples in the Fourier transform. One possible way to solve the problem of 

termination ripples is to consider a multiplying modification factor W(Q) that goes 

smoothly to zero for Q>Qmax. This costs, however, a broadening of the peaks.  

The fact that we use a Fourier transform implies that the PDF permits the study of 

local structures in real space instead of in reciprocal space. In other words, the PDF 

analysis is simply another way to represent the diffraction data in real space. The 

advantage is that we can get real inter-atomic distances from the PDF peaks in a 

straightforward way; they give direct distances between pairs of atoms. If a peak shifts to 

a lower value of r(Å), for example, it follows that the bond between the two atoms has 

became shorter. 
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Raw data 

(a) 

 

Structure 
Function 

(b) 

 

PDF 

(c) 

Figure 3.8: Main steps that lead to the final PDF spectrum. In this case the sample is Ni. 
(a) Raw data are the result of a diffraction experiment; (b) we consider corrections to the 
raw data due to experimental effects and we put them on an absolute scale; (c) finally we 
take the Fourier transform of the properly corrected and normalized data. 
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The PDF analysis can be applied to diffraction data obtained using neutrons, 

electrons, and x-rays. Powder and single crystal methods are both valid. However, 

powder measurements are significantly easier to perform. Since arbitrary fitting 

parameters are not involved, theoretical calculations and experimental data can be 

directly compared.27, 28

In theory, obtaining a three dimensional PDF is also possible. All we need is to 

collect diffraction data in three dimensions. The measurement is, however, very time 

consuming. For this reason, PDF is usually applied to isotropic samples (powder 

diffraction); in this way G(r) is reduced to a one dimensional function.24

The PDF function is also referred to as a pair correlation function. The term 

correlation is used to mean deviation from the average structure. In this context, 

correlations mean the oscillations of the PDF. The atomic structural information is 

contained in these oscillations. 

 

3.8.3 Various correlation functions  

We have already introduced one correlation function, the reduced pair density 

function G(r); this function is directly obtained from the Fourier transform of S(Q) and 

thus is directly related to the data. In this paragraph, we will introduce other correlation 

functions, each with its own physical peculiarities. 

The original definition of pair density function (PDF), ρ(r), is given by: 

04
)()( ρ

π
ρ +=

r
rGr  

where 0ρ is the average atomic number density. 

In addition to G(r) and ρ(r), we can also define a radial distribution function 

(RDF), R(r): 

)(4)( 0
2 rgrrR ρπ=  

In the expression of R(r), the function g(r) is defined through ρ(r) in the following way: 

)()( 0 rgr ρρ =  
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g(r) is called pair distribution function and is related to the reduced distribution function 

G(r) by: 

( )1)( 4)( 0 −= rgrrG ρπ  

Since , then 0r when 0)( and  r  when  1)( →→∞→→ rgrg ∞→→ r when 0)(rG  and 

0r  -4G(r) ρπ→  when . This result is important because it implies that at low r, 

the function G(r) is a straight line going through the origin with a slope proportional to 

average number density

0→r

0ρ . A significant consequence of this fact is that while it is 

necessary to assume a certain value for 0ρ  when calculating g(r) or ρ(r), in the case of 

G(r), the information about 0ρ  is already contained in G(r) itself. Nothing concerning the 

structure is assumed in G(r). 

An important feature of G(r) is that the random uncertainties in the data are 

constant in r and do not fall off like  as in the case of ρ(r). G(r) is, therefore, 

extremely convenient for the purpose of refinement analysis of short range correlations 

since it does not suffer from the problem of giving statistically unjustified importance to 

the data at low r. 

r/1

Considering the RDF, we can easily get the number of atoms in a spherical shell 

of thickness dr at distance r from a reference atom. The coordination number, in fact, is 

given by:24

∫=
1

2

)(
r

r
coord drrRN  

where r1 and r2 identify the coordination shell of interest and, at the same time, the PDF 

peak. In other terms, the coordination number is obtained by integrating the intensity 

under a certain PDF peak. The RDF can be defined as the probability of finding an atom 

in an area of radius r. 

 What is notable is that the radial distribution function represents the actual 

distribution of distances seen from a particular atom. Therefore, here is where the 

Gaussian broadening due to thermal fluctuations or random disorder should be directly 

applied. The disadvantage of RDF is that it diverges like r2: plotting the data using R(r) 

becomes less and less satisfactory as r increases. 
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In this work, refinement analysis was not explicitly performed; therefore, we 

opted to use ρ(r) and RDF(r), instead of G(r). The convenience of this approach resides in 

the fact that, since ρ(r) has a natural baseline at ρ(r) = 0, the use of RDF permits a direct 

comparison between the respective weights of neighboring peaks.  

 

3.8.4 Experimental considerations on neutron PDF measurements 

Ideally, in order to carry out the Fourier transform of S(Q), measurements up to 

 would be necessary. In practice, the termination value Q=Q∞=Q max implies that what 

we carry out is a Fourier transform that utilizes a cut-off function of S(Q). The 

consequence is the appearance of the so called termination ripples, spurious oscillations 

of the data at short distances. However, for high Qmax the termination errors can be 

considered negligible. In fact, since S(Q)→1 for increasing Q, if S(Q)-1 is small enough 

at Qmax, the effect of the termination in the Fourier transform is minimal.24 The choice of 

Qmax is, therefore, of a great importance in a PDF measurement. Furthermore, because the 

PDF is obtained via Fourier transform of the scattering data, the extent of the data in Q-

space determines the real space resolution of the PDF. In other terms, the required real 

space resolution of the PDF determines the value of Qmax that is necessary in a 

measurement. 

The effect of the Q resolution ∆Q is also a key factor in a PDF measurement. Figure 

3.9 shows an example of this effect. Two different instruments were used to measure 

nickel powder, the GLAD at IPNS and the NPDF at LANSCE.26 The first diffractometer 

has a low resolution of ~0.6%, the second has a higher resolution of ~0.15%. In both 

cases, data were terminated at Qmax=35 Å-1. It is clear that information is lost in the 

nanometer range when a low resolution diffractometer is used. Moreover, the Q 

resolution results in an exponential dampening of the PDF peaks as function of r.30 In 

order to determine a pair distribution function over a large distance-range, a high Q 

resolution is essential. In a measurement, the desired maximum range of distances 

determines the necessary ∆Q. NPDF permits high Q-resolution data acquisition for PDF 

analysis up to r~100 Å. 
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Figure 3.9: Influence of the reciprocal space resolution ∆Q on the PDF of Ni. The solid 
line represents data from NPDF at Lujan Center at Los Alamos National Laboratory and 
the dots are data from GLAD at Intense Pulsed Neutron Source at Argonne National 
Laboratory. 
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Chapter 4 

Properties of the compounds studied  

In this chapter, the main properties of the compounds studied and the sample 

preparation are discussed. Since the three main characters in the unfolding novel of 

superconductivity in sodium cobaltate are (1) the non superconducting anhydrous 

compound NaxCoO2, (2) the deuterated superconducting compound NaxCoO2yD2O, and 

(3) (heavy) water, a brief ‘biographical’ sketch of each of them is presented here before 

discussing the experimental results in the next chapter. 

 

4.1 Structure of NaxCoO2

Sodium cobalt oxide NaxCoO2 has a triangular layered structure identified by 

several space groups, depending on the Na content (x).29 Here only the composition with 

x~0.7 is discussed. 

The crystal structure of the non superconducting Na0.7CoO2 is a layered structure 

characterized by the hexagonal space group P63/mmc.1 Two dimensional CoO2 layers, 

perpendicular to the c axis, alternate with layers of Na+ ions. Co atoms form a triangular 

lattice due to the fact that each CoO2 layer is arranged in a pattern of edge-sharing 

octahedra. CoO2 layers have a 63 screw-axis symmetry and along the c axis there is 

mirror symmetry between two CoO2 layers. Na+ ions are in two partially occupied sites, 

Na1 and Na2 (figure 4.1a). The Na1 site is coordinated to six oxygen atoms, three above 

and three below its site; each O atom is coordinated to a different Co atom. Also the Na2 

site is coordinated with six oxygen atoms, but in this case, these O atoms are coordinated 

only to two Co atoms, one above and one below its site5 (figure 4.1b). 
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  (a) 
 

  (b) 
 

Figure 4.1: (a) Structure of Na0.7CoO2 (space group P63/mmc). Layers of edge-sharing 
CoO6 octahedra are separated by layers of Na+ ions. Na atoms are in two partially 
occupied sites (Na1 and Na2). (b) Coordination of the Na1 and Na2 sites to O atoms in 
the CoO2 layer. 
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Different research groups have determined the lattice parameters of Na0.7CoO2 

using Rietveld refinement on both neutron4,5 and x-ray2 diffraction data at different 

temperatures. In the case of powder neutron diffraction data, the results of this analysis 

are summarized in table 4.1. The calculated PDF of Na0.7CoO2 used in this thesis is based 

on the structure obtained by this particular Rietveld refinement.5

 

4.1.1 Phase diagram of NaxCoO2 

 
 As already mentioned in chapter two, NaxCoO2 possesses an interesting phase 

diagram31,3,32,33, not yet completely understood. The superconducting phase - the one 

directly related to this work - appears for a narrow range of doping (1/4<x<1/3), when 

water is intercalated.1 TC is >2 K with a maximum of 4.5 K at x~0.3. The dome-like 

behavior in this doping interval resembles that of cuprates. As x increases, first a 

paramagnetic phase (1/3<x<1/2) and then a charged ordered insulating phase (x~1/2) 

appear. For x~2/3 the system behaves like a Curie-Weiss metal3,34, while for x~3/4 a 

magnetically ordered metallic phase sets in; the latter phase is believed, but it is still not 

certain, to be equivalent to the spin-density-wave (SDW) phase. The described phase 

diagram is illustrated in figure 4.2. 

For a general Na content x, the site occupancies of the Na atoms are inequivalent 

and vary systematically with x. The values x=1 and x=1/2 correspond to two special 

situations. In the first case, one site is fully occupied while the other one is empty; in the 

second case, both sites have equivalent occupancy (1/4) and the system behaves like a 

charged ordered insulator.  

 

Table 4.1: Lattice parameters for NaxCoO2 (x~0.7) based on Rietveld refinement of 
powder neutron diffraction data at two different temperatures.5

 

Temperature 12 K 295 K 

a (Å)= b (Å) 2.83176 2.83287

c (Å) 10.8431 10.8969
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Figure 4.2: Phase diagram of NaxCoO2. The superconducting state appears for a narrow 
interval of the doping, 1/4<x<1/3. When x~1/2, NaxCoO2 behaves like a charge order 
insulator, like a paramagnetic metal when x is just below 1/2, and like a Curie-Weiss 
metal when x is just above 1/2. For x~3/4, some believe that it behaves like a SDW metal. 

 

4.2 Structure of NaxCoO2yD2O 

Na0.7CoO2 is made superconducting by partially removing Na ions and 

subsequently intercalating water.1 When the sodium concentration is reduced, Na is 

selectively removed from one of the two partially occupied sites; the site that undergoes 

the strongest Na-Co repulsion is emptied, while the occupancy of the other site is 

decreased to ~1/3. During this process, the oxidation state of Co changes. Therefore, as in 

cuprates, the doped charge originates from the layer outside the CoO2 plane (the Na 

layer). The intercalated water goes presumably to form additional layers between the Na 

and the CoO2 layers, increasing the spatial separation between two successive CoO2 

planes (figure 4.3). This increment can be noticed by considering the difference in the 

value of the c axis; after water is inserted, c almost doubles. 

Several neutron and X-ray diffraction experiments have been conducted in order 

to investigate the crystal structure of NaxCoO2yD2O.1,4,5,35 The values of the lattice 

parameters found by Rietveld refinement are reported in table 4.2.  
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Table 4.2: Lattice parameters for NaxCoO2yD2O based on Rietveld refinement of powder 
neutron diffraction data at two different temperatures.5

 
 

Temperature 12 K 295 K 

a (Å)= b (Å) 2.81693 2.82166

c (Å) 19.6449 19.7681

 

 

 

 

 

 

 
 

 

Figure 4.3: Oxidation process in sodium cobaltate. When water is intercalated in the Na 
deficient compound NaxCoO2, the spatial separation between CoO2 layers is increased by 
the formation of additional H2O layers between two consecutive Na and CoO2 layers. 
 

 40



www.manaraa.com

Despite many efforts, however, no agreement on the spatial distribution of the 

H2O (or D2O) molecules has been reached yet. By means of neutron scattering, it has 

been argued that the water layer resembles the low temperature ice structure.4

Up to this point, the most likely arrangement of the water molecules within the 

structure of NaxCoO2yD2O has been proposed by Jorgensen et al.5 According to their 

model, the maximum TC of 4.5 K is achieved by coordinating each remaining Na atom to 

four different D2O molecules, two above and two below the Na site. 

One D atom of each water molecule is hydrogen bonded to an O atom belonging 

to a CoO2 plane; the second D atom of each water molecule is positioned in a plane 

between the Na and the CoO2 layers and is hydrogen bonded to the O atom of a 

neighboring D2O molecule (figure 4.4). The formation of these hydrogen bonds between 

adjacent D2O molecules within the water planes leads to the formation of D-O---D-O---

D-O chains characterized by a zigzag pattern. The D-D distance in these chains is 2.44 Å 

(figure 4.5).  

One of the criteria used to select the 4-fold coordination of Na to D2O molecules 

regards the average Na-O distance; this model, in fact, keeps its value (2.31 Å) close to 

the value assumed in the parent compound (2.41 Å). In addition, all the positions 

assumed for the D2O molecules allow the formation of hydrogen bonds that involve both 

the D atoms of each molecule. Moreover, the orientation chosen for the D2O molecules is 

the orientation that tends to minimize the Na-D and D-D repulsion. In particular the 

constraint on the Na-D distance gives rise to an arrangement of sodium and water in a 

two dimensional super-cell. The smallest super cell that preserves the hexagonal 

symmetry of the parent compound has been found to be an orthorhombic super cell with 

dimensions (3a, 3 a, 3c) (figure 4.5). This structure has 1/3 of the Na sites occupied; 

four O atoms are coordinated to each Na+, two above and two below the ion. The 

resulting ideal composition is Na1/3CoO2(4/3)D2O; for this composition, TC assumes its 

maximum value of 4.5 K. 
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Figure 4.4: The structure model of NaxCoO24xD2O (x≈1/3) proposed by Jorgensen et al. 
Two arrangements are possible, the cis (planar) and the trans (twisted by 60°). Each of 
them corresponds to a possible arrangement of the D2O molecules above and below a 
certain Na+. So far, diffraction experiments could not distinguish between the two. 
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Figure 4.5: Two dimensional super-cell in NaxCoO24xD2O. In the Jorgensen model, 
sodium and water molecules are arranged in a two dimensional super-cell of dimensions 
3a x 3 a x 3c. The zigzag chains D-O---D-O---D-O due to the hydrogen bonds between 
adjacent D2O molecules are here clearly visible. 
 

4.3 Water and ice  

The chemical formula of water is probably the most well known of all chemical 

formulas. One molecule of water consists of 2 atoms of hydrogen and one atom of 

oxygen linked together by covalent bonds. For a free molecule, commonly used 

molecular models utilize O-H lengths between 0.957 Å and 1.00 Å, and H-O-H angles 

from 104.5° to 109.5°; some of the values deduced by experiments and ab initio 

calculations are reported in table 4.3. This table shows that in liquid water, there are 

slightly greater values for both the H-O distance and the H-O-H angle; this happens 

because the hydrogen bonding between molecules slightly weakens the covalent bonding 

present within a molecule. In different H-bonded environments and in situations where 

the water molecules are bound to solutes and ions, the bond lengths and angles are likely 

to change due to a shift in the polarization of the molecules.38

Water molecules are rather symmetric. Two mirror planes of symmetry exist: one 

plane contains all three atoms, the other is perpendicular to the plane passing through the 

bisector of the H-O-H angle. Moreover, if a rotation of 180° about the bisector occurs, the 

shape of the molecule remains unchanged: the molecule has a 2-fold rotation axis 

(180°=360°/2).This type of symmetry belongs to the point group C2v. 
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Table 4.3: Experimental values of the bond angle H-O-H and bond length O-H. 

 

 

Technique 
From the rotational 
components of the 
rotation-vibration 
spectrum (1956) 

 

Neutron diffraction 

ab initio 

calculations 

O-H (Å) liquid 0.9572[42] 0.970[39] 0.991[41])

H-O-H (º) liquid 104.52[42] 106[39] 105.5[41])

O-H (Å) gaseous   0.95718[40]

H-O-H (º) gaseous   104.474[40]

Water molecules are arranged in a slightly distorted tetrahedral ordering. The 

value of the H-O-H angle is close, in fact, to the angle expected for sp3 hybridization, the 

combination of one s orbital and 3p orbitals. In an H2O molecule, the four orbitals are 

oriented tetrahedrally: O is at the center of the tetrahedron, with two corners occupied by 

H atoms and two by the lone pairs, the electrons not involved in the covalent bonds. Such 

an ideal structure should give an H-O-H bond angle of 109.5°. However, the actual value 

for a free water molecule is 104.5º. This is due to the fact that the value of the H-O-H 

bond angle is determined by the force balance between the lone pair electrons on the 

oxygen and the hydrogen atoms. Since the lone pairs remain closer to the O atom, the 

repulsion between them ends up being stronger than the repulsion between the two 

covalent-bonding pairs. As a result, the H atoms are forced to get closer. Therefore, the 

final value of the H-O-H bond angle is less than the one that would emerge from a perfect 

tetrahedral structure, and it turns out to be 104.5º. 

The fact that the molecule is bent is of a crucial importance to the properties of 

water and ice.36,37,38 The bent shape gives it a dipole moment and determines how the 

molecules can fit together in a crystal. The difference in electronegativity between 

oxygen and hydrogen causes the electrons that are involved in the covalent bonds to be 

more attracted to the O atom. As a consequence, the H-O covalent bonds are highly polar. 

Since the two polar covalent bonds do not lie in a straight line, the water molecule as a 

whole is polar. The consequent charge displacement gives rise to an electric dipole 
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moment, oriented along the bisector of the H-O-H angle with its positive end on the 

hydrogen side of the molecule. Figures 4.6a,b,c,d,e summarize the discussed properties 

of a water molecule. The non uniform charge distribution of a water molecule is shown in 

figure 4.6f through a gradation in color from green to purple.  

One of the properties of polar molecules is the tendency to align themselves along 

the direction of an applied electric field. In liquid water, the dielectric constant is 

dominated by the reorientation of the molecules due to their large dipole moments. The 

resulting value is large. The high dielectric constant is the reason why water is an 

excellent solvent for ionic and covalent substances. In ice, the reorientation of molecules 

is more limited than in the liquid phase; in this case, the proton motion is mainly 

responsible for the large value of the dielectric constant.43,44 The value of the dielectric 

constant of liquid water is 87.9 at 0°C; it increases on conversion to ice and increases 

further as the ice is cooled. For ice Ih, it is 99 at -20°C, and 171 at -120°C.54 On heating, 

the dielectric constant drops, and liquid water becomes far less polar; it goes from 87.9 at 

0°C, to 55.6 at 100°C.43 In a similar fashion, the dielectric constant reduces if the 

hydrogen bonding is broken, for example because of the presence of a strong electric 

field. Pressure, on the other hand, increases the dielectric constant (which becomes 

101.42 at 0°C and 500 MPa), due to its effect on the density. 

Since H2O is highly polar, it interacts with other polar molecules. Importantly, 

H2O molecules are able to attract other H2O molecules through a weak electrostatic 

interaction, the hydrogen bonding. This attraction is very sensitive to orientation, 

assuming a maximum value when the O-H-O atoms are lined up. The hydrogen bond in 

water holds the key to its structure and properties. Its strength is ~3 kcal/mole, much 

smaller than the strength of the covalent bond (~100 kcal/mole). The dynamic motion of 

atoms induces the hydrogen bonds to constantly break and reform. The result is a 

statistical distribution of different coordination numbers.  
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       (a)                (b) 

 

(c)      (d) 

 

  (e)                        (f) 
 

Figure 4.6: Properties of water. (a) Geometry of a free water molecule. The symmetry is 
C2v, meaning that it has 2 mirror planes and a C2 axis. (b) In liquid water, we can assume 
with good approximation that the bonding angle H-O-H is 104.5° and that the bonding 
length O-H is ~1 Å. (c) The value of the H-O-H angle is close to the angle expected for 
sp3 hybridization; however, an ideal tetrahedral structure should give an H-O-H bond 
angle of 109.5°. (d) Since the lone pairs repel each other more than the O-H bonds, the 
covalent bonds are pushed closer, making the H-O-H angle less than 109.5°. (e) The non 
uniform charge distribution around O is illustrated through the use of a color gradient 
(green=positive, purple=negative). (f) The dipole moment of a water molecule is 
represented by a red arrow. 
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Due to the fact that each H2O molecule can form hydrogen bonds with other H2O 

molecules, an elaborate inter-molecular network gives rise to the different 

crystallographic phases of water. The most common form of ice is ice Ih; it is, in fact, the 

form of all natural snow and ice on Earth. Ice Ih has hexagonal symmetry and space 

group P63/mmc.43 In this form of ice, a water molecule forms hydrogen-bonds with four 

surrounding molecules. Two of these are hydrogen-bonded to the O atom of the central 

H2O molecule, while each of the two hydrogen atoms is bonded to another neighboring 

H2O molecule. The four bonds from each O atom point toward the four corners of a 

tetrahedron centered on the O atom. In ice Ih, these bond angles are nearly the same as 

the perfect tetrahedral angle (109.5º). This basic assembly repeats itself in three 

dimensions to build the ice crystal.38

In figure 4.7, a comparison between a three-dimensional local structure of ice Ih 

and liquid water is shown. The greater openness of the ice structure is necessary to ensure 

the strongest degree of hydrogen bonding in the crystal lattice. 

 

 

 
 

 

Figure 4.7: Hydrogen-bonds in ice Ih (left) and liquid water (right). H-bonds in ice give 
rise to a more stable structure. 
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In this work, the calculated pair distribution function (PDF) of ice was based on 

the ordered form of ice Ih, i.e. ice XI. This type of ice represents the low-temperature 

equilibrium structure of hexagonal ice. The transition ice Ih→ice XI is usually induced 

by doping ice Ih with alkali hydroxides below a temperature of 72 K (below 76 K in 

D2O). So far, the most effective dopant has been KOH. The hydroxide ions create defects 

in the hexagonal ice allowing protons to jump more freely between the oxygen atoms. As 

a result, ice XI is a proton-ordered form of the hexagonal ice, forming crystals with 

orthorhombic symmetry (space group Cmc21). The described structure is shown in figure 

4.8; the unit cell has dimensions a=4.5019 Å, b=7.7978 Å, c=7.3280 Å (90º, 90º, 90º).43

 

4.3.1 Molecular vibration of water  

A free water molecule has three normal modes of vibration, two stretching modes 

(the symmetric stretching mode ν1, and the asymmetric stretching mode ν3) and one 

bending mode ν2 (figure 4.9). The absorption frequencies ν3 and ν1 depend on the force 

necessary to stretch the covalent O-H bond, while the bending mode ν2 depends on the 

force necessary to change the bond angle. The dipole moments change in the direction of 

the movement of the oxygen atoms, as shown by the arrows in figure 4.9. The three 

frequencies have approximately the following values:43

 
ν1=450 meV        ν2=200 meV        ν3=465 meV 

 

In liquid water and ice, the infrared and Raman spectra are far more complex than 

in the vapor phase due to vibrational overtones and combinations with librations. 

Librations are due to the restrictions imposed by hydrogen bonding. They depend on the 

momenta of inertia of the molecule. For instance, the fact that D2O has momentum of 

inertia that are almost double the ones of H2O reduces the frequencies by a factor of 

~ 2 . 
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onal ice with space group P63/mmc; it is 
(b) Ice XI, the low temperature proton-

bic symmetry (space group Cmc21). The 
ice XI requires dopant defects and a temperature < 

(a) (b) 

Figure 4.8: Structure of ice. (a) Ice Ih, the hexag
the form of all natural snow and ice on Earth. 
ordered structure of ice Ih. It has orthorhom
transformation process from ice Ih→
72K. 
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(a) 

 

(b) 

Figure 4.9: Vibration modes of water. (a) The three normal modes of vibration of a free 
water molecule: ν1 is the symmetric stretching mode, ν3 is the asymmetric stretching 
mode, and ν2 is the bending mode. (b) Librations. In liquid water and ice, things get more 
complicated due to the possible combinations of the normal modes with librations. 
Librations depend on the momentum of inertia of the molecule along x, y, and z. 
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4.3.2 Self-ionization of water  

Water is not a simple collection of H2O molecules. Self-ionization always occurs: 

one water molecule donates a proton, and another one accepts the proton. The ionization 

reaction is reversible and it can be written as follows: 

 

2H2O H3O+ + OH-

 

Due to this process there is always at least a small concentration of both H3O+

OH-. Because of the presence of these ions, water is not a perfect insulator. However, 

since the concentrations of H3O+ and OH- are small, water is not a good conductor either. 

The concentrations of the two ions in pure water are the same and equal to 1.0 x 10-7 M. 

The 7 in the power of this number gives the characteristic pH=7 of neutral water. 

 

4.4 Sample preparation 

x 2

a0.75CoO2 powder was placed in a 6.6molar Br2/CH3CN solution for 2-5 days. After 

carefully filtering and washing in pure CH3CN and CH3CN/D2O, the sample was further 

deuterated by stirring in the distilled D2O. The detailed description of the procedure can 

be found elsewhere.2 The estimated stoichiometry of the superconducting sample was 

Na0.35CoO21.4D2O, and TC was 4.5 K. The resulting sample was pure in D2O. The choice 

of heavy water over regular water was made in order to avoid the disturbing background 

due to inelastic scattering from H. 

 and 

The superconducting cobaltate sample was prepared at Oak Ridge National 

Laboratory (ORNL) by intercalating D2O molecules into Na-deficient Na CoO . 

N
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Chapter 5 

Experimental analysis and results 

In this chapter, the study 0.35 2 2O at two different temperatures, 

T=15 K and T=100 K, is presented. Powder neutron diffraction data were analyzed using 

the Pair Distribution Function (PDF) techniqu

ion and 

5.1 Da

 obtains the total scattering structural function S(Q) 

and the pair distribution function G(r) from time of flight neutron powder diffraction 

data. Once all the information about the sample, the instrument and the detector banks is 

entered, there are three main steps that lead to the PDF. First of all, the measured data are 

corrected for background scattering, container scattering, and incident spectrum 

 of Na CoO 1.4D

e. The measured and calculated PDFs of 

Na0.7CoO2, Nao.35CoO21.4D2O, and D2O were compared. In order to determine any local 

structural change within the intercalated water molecules, the analysis has been 

concentrated in the intra-molecular range of D2O (<1.7 Å). The possible implications of 

this work are discussed at the end of the chapter in terms of electron conduct

superconductivity. 

 

ta collection and analysis 

The neutron diffraction experiments discussed in this thesis were performed at the 

NPDF diffractometer at the Los Alamos Lujan center (see paragraph 3.7.1). Data were 

collected at a temperature of 12 K in the case of heavy water and at two different 

temperatures, T1=15 K and T2=100 K, in the case of sodium cobaltate. About 4 grams of 

each sample, sealed in a vanadium can, were used. The cutoff value of Q (i.e. Qmax) was 

chosen to be 42 Å (see paragraph 3.8.4). The data analysis was performed using the 

software PDFgetN.27 This program
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according to the following equation: 

B

BB

VV
CCSSI

−
−−−

=
)()( α

 

S represents the sample scattering, C the scattering from an empty sample container, and 

 characterization of the incident 

spectrum. The subscript 'B' indicates the background spectra for S, V and B. The factor α 

takes into account the absorption of the sample. Therefore, a PDF measurement usually 

requires th

S(Q) is the effective sample density. As a general rule, when the 

ffective density increases, the asymptote of S(Q) decreases and vice versa. In many 

 only parameter that is necessary to adjust to get 

a good PDF. The normalization of S(Q) can be done either manually, by adjusting its 

asym

 

V the scattering from a vanadium sample, which gives a

ree characterization runs before the sample measurement can be performed: 

vanadium, empty container, and instrument background. 

In a second step, absorption, multiple scattering, and the Plazcek inelastic 

correction can be taken into account. The normalized intensities from the different 

detector banks are combined together to give the final S(Q). One of the most important 

requirements in a PDF analysis is to get a properly normalized S(Q). The goal is to 

normalize S(Q) to one when values of Q are high (figure 5.1). The quantity that controls 

the normalization of 

e

cases, the effective sample density is the

ptotic behavior, or automatically, letting the program determine the best effective 

density value. Once a correctly normalized S(Q) has been obtained, G(r) can be 

calculated according to its definition.  

Figure 5.2 shows the reduced structural function Q[S(Q)-1], which is the quantity 

that is directly used to Fourier transform the data. Since S(Q)→1 at high Q, Q[S(Q)-1] 

oscillates around zero at high Q. Figure 5.3 details the resulting pair distribution function 

G(r). 

All of the following three figures (5.2, 5.3, and 5.4) show the output of PDFgetN in 

the case of the deuterated sodium cobaltate Na0.35CoO2yD2O. The graphs are obtained 

directly from PDFgetN using the plotting program KUPLOT.27
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1S(Q) →

Figure 5.1 The values of S(Q) calculated for each different bank are blended together to 
obtain a single final structural function S(Q). A correctly normalized S(Q) converges at 
one for large Q. Data refers to Na0.35CoO2yD2O. 
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Figure 5.2: The total scattering structural function S(Q) can be plotted in the form of the 
reduced structural function Q[S(Q)-1]. Since S(Q) approaches one as Q increases, 
Q[S(Q)-1] oscillates around zero at high Q. This is the function directly used when data 
are Fourier transformed into G(r), as the formula in the inset indicates. Data refers to 
Na0.35CoO2yD2O. 
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Figure 5.3: The pair distribution function G(r) of Na0.35CoO2yD2O, obtained from 
PDFgetN and plotted with KUPLOT. G(r) oscillates around zero at high Q. Each peak 
corresponds to the distance in Å between two atoms. The insert shows the graphical 
interface of PDFgetN for G(r) in the range from 0 Å to 5 Å.  
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5.2 Experimental pair distribution functions 

he experime  

figure 5.4 for both temperatur

spurious peak that does not

significant difference between the tw ly 

one set of data will be considered in th  

conclusions will, then, apply to b  

limited to 5 Å for a more deta

In figure 5.4b ts 

from zero. At low values of 

tional to the average density ρ0 of the sample, that is 

G(r)=

T ntal pair distribution function G(r) of Na0.35CoO21.4D2O is shown in

es, T1=15 K and T2=100 K. The first very sharp peak is a 

 correspond to any real atom-atom correlation. There is no 

o curves. Therefore, for the sake of simplicity, on

e following discussion - the one at 15 K. The

oth temperatures. The range in the figure has been

iled characterization of the peaks. 

, the baseline for G(r) has been included; it is the red line that star

r, in fact, G(r) is a straight line that goes through zero; the 

slope of this line is propor

r04πρ−

average de

for r →0. When calculating ρ(r) from the data, a theoretical value of the 

nsity is assumed, according to the definition ρ(r)= )(0 rgρ . This value 

determines the baseline.  

However, if we want to take into account the weight of each peak, it is more 

convenient to plot the data in terms of the radial distribution function R(r)=4π r2ρ(r) 

instead of G(r). In this situation, in fact, the natural baseline is zero since ρ(r) goes to zero 

as . For this reason, we will use the RDF later on in our analysis. Figure 5.5 shows 

a comparison between the baseline for G(r) and R(r) in the case of Na0.35CoO21.4D2O; a 

 to literature, the sharp peak 

at ~1 Å should correspond to the O-D distance, while the less sharp peak at 1.6 Å to the 

D-D distance. These two distances are the intra-molecular distances expected within a 

free water molecule. As for Na0.7CoO2, no peaks appear to be in our range of interest, 

below 1.7 Å. In order to verify these assumptions for D2O and Na0.7CoO2, and in order to 

find out what distance-correlation each peak in the experimental PDF of 

Na0.35CoO21.4D2O represents, the calculated PDFs have been considered. 

0→r

narrow range from 0.8 Å to 2 Å has been chosen to enhance the difference. 

The pair distribution functions of D2O and Na0.7CoO2 are shown in figure 5.6. In 

both PDFs, several peaks are visible. As for water, according
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Figure 5.4: (a) G(r) of Na0.35CoO21.4D2O at two different temperatures T=15 K, 100 K. 
No significant difference is visible at low r. (b) The baseline for G(r) has been included 
for the set of data at 15 K. The first very sharp peak is a spurious peak and does not 
correspond to any real distance-correlation; it will not be considered in further analysis. 
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Figure 5.5: Comparison between the baseline for G(r) and for R(r) in the case of 
Na0.35CoO21.4D2O. When r →0, G(r)= r04πρ− ; on the other hand, when r →0, 

)(rρ goes to zero, and so does R(r). The range from 0.8 Å to 2 Å has been chosen here 
because it is the one that will be considered later in our analysis. 
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Figure 5.6: (a) Experimental PDF of heavy water. According to literature, the first peak 
at ~1Å corresponds to the O-D correlation, while the second less sharp peak at ~1.6 Å to 
the D-D correlation within a single D2O molecule. (b) Experimental PDF of Na0.7CoO2. 

most important piece of information we can extract from this figure is that no peaks 
appear to be below 1.7 Å. 
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5.3 Calculated pair distribution functions 

Since D2O and Na0.7CoO2 are the two compounds that give rise to the 

superconducting phase, it comes naturally to first analyze each of them separately and 

then, combine the results in terms of Na0.35CoO21.4D2O. We are interested in the intra-

molecular range, so we need to associate each peak that falls in that range with a specific 

atom-atom distance. The calculated partial PDF gives the distances between species of 

atoms and, therefore, represents the ideal tool to identify each peak. In the case of water, 

we will have the three distances D-D, D-O, and O-O; in the case of Na0.7CoO2, we will 

have the distances Na-Na, Na-Co, Na-O, Co-Co, O-O, and Co-O. The calculated PDF of 

(heavy) water is based on the structure of low temperature ice (see chapter 4). The PDF 

of Na0.7CoO2 was calculated using the structural parameters obtained using Rietveld 

refinement and the super-cell proposed by Jorgensen (see chapter 4).5

The partial pair distribution functions of heavy water and Na0.7CoO2 are shown in 

figure 5.7. In D2O, the first two calculated peaks are found at 0.97 Å and 1.58 Å; they 

correspond indeed to the D-O and D-D distances, as expected. In the case of Na0.7CoO2, 

there are no peaks below 1.8 Å. The first sharp peak appears at 1.9 Å and corresponds to 

the Co-O distance. We can conclude that, in the distance range from zero to 1.8 Å, the 

dry cobaltate Na0.7CoO2 brings no contribution to the peaks observed in the diffraction 

spectrum of Na0.35CoO21.4D2O. 

 

5.4 Results 

In the previous paragraph, we determined that no peaks belonging to Na0.7CoO2 can 

be found below 1.7 Å. Thus, we expect that all the peaks observed in Na0.35CoO21.4D2O 

below 1.7 Å are due to the presence of D2O. A good way to verify this suppos is to ition 

make a comparison between the measured spectrum of heavy water and deuterated 

sodium cobaltate. As already mentioned, we are interested in studying the changes in the 

local structure within an inserted D2O molecule. For this reason, in the following analysis  
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Figure 5.7: (a) Calculated partial PDF of heavy water; (b) calculated partial PDF of 
Na0.7CoO2. In water, the first two peaks correspond to the D-O (0.97 Å, green dotted line) 
and D-D (1.58 Å, blue dotted line) distances. In dry sodium cobaltate, there are no peaks 
below 1.7 Å; we can conclude that all the peaks that appear below 1.7 Å in the 
experimental spectrum of the deuterated cobaltate are only due to D2O. 
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the r-range has been narrowed to just a few Å. Figure 5.8 shows a comparison between 

the experimental G(r) of Na0.35CoO21.4D2O and D2O. The O-D peak in the experimental 

PDF of heavy water coincides exactly with the first sharp peak in the PDF of 

Na0.35CoO21.4D2O. In other words, the peak that appears at 0.95 Å in the PDF of 

Na0.35CoO21.4D2O corresponds indeed to the distance between the O atom and the D 

atom within an inserted D2O molecule.  

In a similar fashion, knowing that the first D-D peak is located at r=1.53 Å in the 

experimental PDF of water, we expect to find in the PDF of Na0.35CoO21.4D2O a peak at 

about the same r. The surprise is that at 1.53 Å, there is no peak at all. Instead, two peaks 

are visible, one above and one below the expected D-D peak position. 

In order to evaluate the positions of the two unknown D-D peaks, a Gaussian fit has 

been carried out in a short interval of distances that includes the peaks. Since, in this case, 

the weight of the peaks is of extreme importance, the RDF has been used. As a fitting 

constraint, the area of the Co-O peak at 1.87 Å has been as the one expected 

from calculation. The fit results are shown in figure 5.9. The first D-D peak has been 

found to be centered at r1=1.46 Å, while the second D-D peak has been found to be 

centered at r2=1.68 Å. Since the O-D distance in Na0.35CoO21.4D2O corresponds to the 

expected O-D distance in D2O, such a result suggests that the D-O-D bond angle of the 

inserted water molecules is altered. In fact, considering a fixed O-D distance of 0.95 Å 

and a double D-D distance of 1.46 Å and 1.68 Å, two bond angles are found; the D-O-D 

angle that corresponds to r1 is 100º, the D-O-D angle that corresponds to r2 is 124º. The 

situation is pictured in figure 5.10.  

The bond angle in regular water and ice always assumes a value that goes from 

104.5º in a free water molecule to 109.5º in hexagonal ice. Regardless of the 

crystallographic phase, the H2O (or D2O) molecules preserve their geometry with well 

defined O-H (or O-D) and H-H (or D-D) distances, and H-O-H (or D-O-D) bond angle. 

 

maintained 

In the case of deuterated sodium cobaltate Na0.35CoO21.4D2O, however, the situation is 

different. Our results show that at both temperatures, T1=15 K and T2=100 K, the D-D 

distance and the D-O-D angle are significantly different from those of ordinary water. 
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Figure 5.8: Comparison between the experimental pair distribution functions of heavy 
water and Na0.35CoO21.4D2O. The peak that appears at 0.95 Å in both PDFs corresponds 
to the O-D peak. As for the D-D peak, in water it is found at r=1.52 Å, while in 
Na0.35CoO21.4D2O such a peak does not exist. Inst
one below r=1.52 Å. 
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Figure 5.9: The Gaussian fit performed to evaluate the positions of the two unexpected 
D-D peaks. A constraint was applied to the area of the Co-O peak, located at 1.87Å. The 
result of the fit indicates that the first peak is centered at 1.46 Å, while the second one is 
centered at 1.68 Å. 

 

 

 

 

 

 

 

 

 

 65



www.manaraa.com

 
Figure 5.10: The new geometry of the inserted water molecules. Since the O-D peaks in 
Na0.35CoO21.4D2O and D2O coincide, it is possible to estimate the two bond angles that 
correspond to the two D-D peaks found in Na0.35CoO21.4D2O. The new geometry of the 
inserted water molecules is illustrated in the figure. The D-O-D angle that corresponds to 
r1=1.46 Å is 100º; it is smaller than the expected bond angle of a regular water molecule. 
The D-O-D angle that corresponds to r2=1.68 Å is 124º; in this second case, the angle is 
bigger than the one expected for a regular water molecule. 

 

Two coexisting distributions of possible D-D distances arise. They translate into two 

distributions of possible D-O-D bond angles. In other words, when water is intercalated 

this point is: do the modified water molecules in superconducting Na0.35CoO21.4D2O play 

a role in the electronic conduction? 

5.5 Discussion of the results 

Up to now, calculations of the electronic structure of the system, done by other 

research groups, largely neglected the importance of the role of water. Furthermore, in 

the analysis of experimental data, the structure of water has been always considered rigid. 

into the dry sodium cobaltate, its geometry is altered. Two populations of water 

molecules emerge; one has a smaller angle with respect to the D-O-D bond angle of 

regular water, while the other one has a larger angle. The question that naturally arises at 

 

 66



www.manaraa.com

No modifications of its geometry have been taken into account. Our results raise several 

questions on the real function of water within the structure of Na0.35CoO21.4D2O. The 

structural modifications seen with the PDF suggest that water is not only a space 

separator between layers of cobalt and sodium. From our current data, it is unclear 

whether water contributes to the conduction of the system or not. Further neutron 

scattering experiments and theoretical calculations that take into account the possible 

implications of the modification of the water geometry are certainly needed. However, 

even with a partial knowledge of the structural and electronic properties of this 

compound, we can still discuss some possible scenarios. 

At first glance, we can speculate that there are two possible roles of the 

what we see with the PDF is just a static order/disorder of the water molecules between 

two

Only the second hypothesis will be further examined here. Since, as of today, 

theoretical and experimental conclusions have been sometimes contradictory, the 

er how previous 

experimental results obtained by other groups could be related to ours. Second, at the end 

of the c

intercalated water in sodium cobaltate:  

1. One possibility is that the inserted water molecules simply re-arrange 

themselves within the sodium cobaltate structure, without any contribution to the overall 

electron conductivity of the final compound. In this case, strictly structural reasons would 

lead the water molecules to assume a broad distribution of different bond angles. Thus, 

 successive layers of CoO2 and Na. 

2. Another possibility is that, instead, water has a more active role in the 

electronic conduction of Na0.35CoO21.4D2O. In this case, the 100º angle could be 

associated with the group of water molecules that slightly reduce their bond angle in 

order to be accommodated into the structure; on the other hand, the 124º angle could be 

associated with the group of water molecules that actively participate in the conduction 

mechanism. 

discussion will be conducted in two steps. First, we will consid

hapter, we will try to put all the experimental evidence together and discuss some 

possible scenarios that may include water as a contributor to electronic conduction and 

superconductivity.  
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5.5.1 Experimental evidence 

Recently, Raman spectroscopy has been used to study the superconducting hydrated 

sodium cobaltate Na0.3CoO21.4H2O. The results of the measurements suggest that H3O+ 

ions are present in the structure.45 The conclusions were that, since the concentration of 

hydronium ions formed by the self-ionization of water is relatively small, it may be 

possible that the formation of the deuterated compound is accompanied by the insertion 

of additional H3O+. Other Raman measurements, however, did not confirm the same 

results. The debate on the H3O+ ions in Na0.35CoO21.4H2O is still open.  

Ab

 give a value of 0.961 Å for the O-H bond length 

and a v

nificant relative and constant motions of the H 

nuclei.

 up and the interaction between the two D atoms becomes 

weaker

0 meV must be attributed to the inserted water molecules present in 

-initio calculations show that the hydronium ion (H3O+) has a flattened pyramidal 

structure. For the gas phase, calculations

alue of 114.7° for the H-O-H angle; in the liquid phase, these two values become 

1.002 Å, and 106.7°, respectively.46 Considering these calculated values of the H-O-H 

angles, the possibility that one of two the angles found in our deuterated sample is due to 

the hydronium ion should be taken into account. 

In water, the large difference between the mass of hydrogen and the mass of oxygen 

leads to an ease of rotation, and to sig

 If the D-D distance changes, the dynamics of the water molecule will change. 

While the libration mode is not affected by a change in the D-D distance, the bending 

mode certainly is. In the case of the smaller D-O-D angle (100º), the two D atoms 

become closer; hence, their interaction becomes stronger. As a consequence, the bending 

mode frequency should increase. On the other hand, in the case of the bigger D-O-D 

angle (124º), the water opens

. Therefore, the bending mode frequency should decrease.  

For regular water and ice, the bending mode frequency is ~200 meV (see chapter 4). 

No additional modes between 150 meV and 200 meV have ever been reported.47,48,49 

According to our previous considerations, in Na0.35CoO21.4D2O, one mode at a frequency 

higher and a frequency lower than 200 meV should appear. Since the phonon density of 

the states of the anhydrous cobaltate cuts at 100 meV, any additional mode in the range 

from 150 meV to 20
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the deuterated compound. Inelastic neutron scattering measurements4 have shown indeed 

the presence of an additional mode at 176 meV, a frequency smaller than the 200 meV 

expe

ction experiment 

on a

 

cted in regular water (figure 5.11).3 In the case of deuterium, we expect such a mode 

to appear at ~128 meV, since it is the mass that determines the frequency of the bending 

mode. This mode would take into account the wider bond angle of 124º. Since the 

measurement was performed up to 250 meV, no evidence of the higher frequency mode, 

corresponding to the 100º angle, has been found so far. 

Investigations on how changing the average cobalt oxidation state n affects the 

critical temperature TC have been carried out.36 A neutron powder diffra

 sample of NaxCoO2-δ4xD2O (x~1/3) showed that structural modifications and lattice 

defects (as oxygen vacancies) may lead to a change in the value of n that would directly 

affect superconductivity. A critical temperature of 2.2 K was observed when n~3.6, while 

the maximum value of 4.5 K was observed when n~3.5. As the cobalt reduction TC 

decreases and superconductivity rapidly disappears. 
 

 
Figure 5.11: Phonon density of states for Na0.3CoO2, Na0.3CoO2(H2O), and 
Na0.3CoO2(D2O). Na0.3CoO2 has a high energy cutoff of ~100 meV. The lattice dynamics 
of the superconducting compound exhibits a mode at 176 meV not found in H2O. 
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Again using neutron powder diffraction, the same group also studied the 

compressibility of NaxCoO24xD2O (x~1/3) over the pressure range of 0-0.6 GPa.50 It has 

been found that pressure increases the thickness of CoO2 layer (figure 5.12). This effect 

has been related to a pressure-induced increasing of the strength of the hydrogen bond 

between one O atom of the CoO2 layer and one D atom of the heavy water molecules 

close to the CoO2 layer. This may induce a charge-redistribution between the Co–O bond 

and the hydrogen bond, causing a change in the O-Co-O angle within the layer. In this 

way

 The possible existence of a form of ice in which there is a polar order of the 

water molecules has been the subject of an intense debate that dates back to the 1920s. 

Recently a few experiments51,52,53 have provided evidence that at least a partial 

ferroelectric alignment can be induced by interaction with a surface or by doping with 

impurities. In the first case, it has been proposed that the interaction of a film of ice with  
 

, the CoO6 octahedra become less distorted. The redistribution of charge would lead 

to a reduction of the average cobalt oxidation state n. As they previously related n 

directly to superconductivity, pressure is also directly related to TC. According to this 

research group, the cobalt oxidation state should be added to the Na and the D2O contents 

to fully describe the superconducting properties of sodium cobaltate.  

Ice exists in a variety of phases, but, in all cases, water molecules are held together 

by a network of hydrogen bonds. Molecules are believed to be oriented without any net 

polarization.

 
Figure 5.12: Effect of pressure on the CoO2 layer. Pressure changes the thickness of the 
CoO2 layer due to a redistribution of charge between the hydrogen bond D-O and the Co-
O bond. As a consequence of this charge redistribution, the oxidation state of Co 
changes, thus directly relating pressure and the valence state of Co. 
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a su

ric, is to determine 

that

bstrate induces, first, a layer of molecules close to the surface to align; in a second 

step, these aligned molecules would influence a fraction of the remaining molecules to 

orient themselves as well. As a result, the sample would have a net polarization, which 

decays with the distance from the substrate. In the second case, it has been shown that 

doping hexagonal ice with hydroxide ions enhances the alignment. Below 72 K, this kind 

of doping gives rise to the ordered form of ice called ice XI (chapter 4). Results of 

neutron diffraction experiments on ice XI are consistent with a ferroelectric alignment of 

some water molecules, leading to the possible conclusion that ice XI is indeed 

ferroelectric. The exact degree of alignment, however, has not been completely 

determined. 

One way that has been used to show that ice Ih exhibits a ferroelectric transition at 

low temperature or, in other words, to show that ice XI is ferroelect

 the Curie-Weiss temperature T0 is finite. The Curie-Weiss law, in fact, is: 

0
0 TT

A
−

=− ∞εε  

where 0ε is the low frequency permittivity (up to ~103 Hz) of the orientation polarization, 

∞ε is the high frequency perm ity (from ~10ittiv 6 Hz to ~1014 Hz) of the orientation 

polarization, A is a constant, and T is the temperature. Therefore, the quantity 

− represents the amplitude of the orientation polarization. Several values of T  have∞εε 0 0  

been reported so far. In figure 5.13a the low frequency permittivity as a function of 

erature is shown; these values otemp f 0ε , and ∞ε =3.2, have been used to determine the 

Curie-Weiss plot of figure 5.13b. In this case, the extrapolated value of T0 is ~2 K.54

 

5.5.2 Possible scenarios 

As of today, there is no unique scenario that can be deduced by the experimental data 

available on sodium cobaltate. Many factors may contribute to trigger the 

superconducting state when sodium is removed and water is intercalated. 
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Figure 5.13: (a) Low frequency permittivity ( 0ε ) as a function of temperature (T) in ice. 
(b) Curie-Weiss plot. The quantity ∞− εε 0 is the amplitude of the orientation 
polarization. The Curie-Weiss temperature does not differ largely from zero and is ~2 K. 
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In nature, there are several examples of water-intercalated compounds where the 

geometry of the water molecule is altered; for example, the hydrous copper sulfate, in 

which water molecules with different bond lengths are found, and many hydrous minerals 

of the Earth’s crust, in which the expansion of the H-O-H bond angle is clearly visible by 

means of neutron scattering. What makes the case of the hydrogenated (or deuterated) 

sodium cobaltate special is the possibility that, here, water could be an active ingredient 

in the electronic conduction process. 

When considering the distribution of smaller bond angles, the first notable thing is 

that there are only a few degrees of difference from the bond angles of regular water/ice. 

The most likely scenario is that, in this case, water molecules simply change slightly their 

geometry to be accommodated into the new structure. In this picture, one of the two 

populations of water molecules would act as a space filler and separator, leaving the 

electronic active role to the one that undergoes the bigger structural modification. 

Opening the bond angle up to 124° requires a conspicuous amount of energy. The 

bonding and non-bonding electron regions, in fact, become closer, and the electron-

electron repulsion between them increases. This high energy cost in broadening the angle 

suggests that water may be embedded in an electronically active environment. Any 

change in the electron density within the lone pairs can result in a drastic change of the 

H-O-H angle. In particular, a reduction of the electronic density would cause a 

broadening of the angle. 

As we already pointed out, self ionization is a process that naturally occurs in water 

due to its polar nature. In the case of sodium cobaltate, however, an additional induced 

ionization of water might also be considered. The fact that the cobalt and sodium layers 

result in having opposite net charge gives rise to an electric field between them. Since the 

activation barrier of ionization is relatively small, this field could induce an ion 

dissociation in water. The total concentration of the hydronium and hydroxide ions would 

then increase. In this scenario, water would be ionized and electronically active. 

 m

extent. This could be related to the smaller angle geometry observed with the PDF. 

When subjected to an electric field, some olecules in the ice structure can rotate 

slightly without causing any bond to rearrange and the bond angle can distort to a small 
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Acc

othesis.  

formed 

by t

sfer. In our case, it would be possible to accumulate charge on 

the c

ording to calculations, the H-O-H angle in H3O+ is larger than the regular bond angle 

found in water/ice. The wider angle geometry could then be related to the hydronium 

ions. 

The presence of hydronium ions has been suggested by Raman measurements. Their 

presence would certainly influence the vibrational modes of water, especially the bending 

mode. In this frame, the observation of an additional bending mode at 176 meV would 

provide additional support to this hyp

In ice, electronic properties arise from the flow of protons though the lattice. Proton 

motion along the ice structure occurs very easily, since only a few defects in the ice 

structure are able to induce this motion. The effect of this motion is that of reorienting the 

molecules along the path. The possible defects in the ice structure fall in two categories, 

the Bjerrum defects and the ionic defects. The first category includes empty bonds and 

bonds with two protons; the second category includes H3O+ and OH-, which are 

he transfer of a proton from one water molecule to the neighboring one, and are 

separated by jumps of protons from one end of a hydrogen bond to the other. However, in 

ice, ions do not move as complete entities. The O atom cannot move from one site to 

another; it is the motion of a proton along a bond that transfers the state of ionization 

from one molecule to another. Shifting a proton along the hydrogen bond requires 

~0.5V/Å. The proton motion and the ion dissociation induced by the field between the 

layers imply a charge tran

obalt layer.  

The interaction of water with the Co layer has been the object of a past neutron 

diffraction study. The Co oxidation state has been found to change when charge is 

redistributed between the O-H and the Co-O bonds. However, in this work, water has 

been maintained with a fixed rigid structure. If, instead, we add the possibility of a water 

modification, a more complex scenario could arise. We may assume that the alteration of 

the water molecules is due to an interaction with the Co layer.  

An important role in the system may be played by phonons, vibrations of charged 

ions in a lattice. The displacement of the ions from their equilibrium positions creates a 

net electric potential felt by electrons zipping through the lattice. In our case, even only 
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considering the self ionization of water, OH- ions could find themselves close to the Co 

layer and could interact with the holes vibrating in the layer. Electron-phonon coupling 

would be enhanced. A large electron phonon constant would give the glue for the 

form

d down may enhance the electron-phonon 

coup

ation of Cooper pairs. Superconductivity may set in. 

Furthermore, experimental evidence of ferroelectricity in low temperature ice leads 

to the possible speculation that ice in this compound is electronically active. The high 

dielectric response of water when ice is coole

ling and, in this way, set in the superconducting phase.  

To complicate things, possible effects of the pressure exerted on the water molecules 

squeezed between the two layers of cobalt and sodium should be considered. It is well 

known that the phase diagram of ice depends on pressure. One possibility is that, locally, 

ice changes its phase. As a consequence, the bond angles would change. Pressure may 

change both the O-D-O and the O-Co-O angles. Pressure on ice has also the ability to 

increase the dielectric constant. Once again, the dielectric response of water could lead to 

superconductivity. 

 

5.6 Conclusions 

Our results show that the D-D distance and the D-O-D angle in Na0.35CoO21.4D2O 

are significantly different from those of ordinary water. Two coexisting distributions of 

possible D-O-D bond angles are observed. We speculate that the altered geometry of the 

intercalated water molecules is due to a modification of the dynamics of the hydrogen 

bond. Water could be ionized and electronically active. Because of recent experimental 

evidence of ferroelectricity in very low temperature ice, we speculate that, in this system, 

ice is active. One possible conclusion is that the strong dielectric response of water may 

enhance the electron-phonon coupling; in this case, water may play a key role in the 

superconductivity of Na0.35CoO21.4D2O. 
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